# Electron Frequency

### We have an electromagnetic spectrum that does not include natural electricity or natural radio frequency.

For some time now I’ve been asking people who should know “what is the frequency of an electron”? What follows is information I’ve found online and hoping for an answer…

Wiki’s electromagnetic spectrum table  click
The RF (radio frequency) part of the spectrum spans frequencies from extremely low RF, 3 Hz to extremely high RF, 300 GHz.  We are told that the low and high frequency ends of the spectrum have no limit.

Note on Wiki: “Hertz (Cycles per second) are expressed in multiples (of 1,000): kilohertz (kHz), megahertz (MHz), gigahertz (GHz), terahertz (THz), petahertz (PHz), and exahertz (EHz).” https://en.wikipedia.org/wiki/Hertz

The near ultraviolet, extreme ultraviolet, soft X-rays, hard X-rays and gamma rays are all natural frequencies but the radio frequency (RF) part of the spectrum consists mainly of artificially generated frequencies – radio transmissions – although some may be found to be occurring naturally – see below. The point of all this is that we are not seeing natural frequencies in the RF bands, radio frequencies are generated artificially by electricity and tuned with a tuner. (See below)

The various radio frequencies listed in the spectrum are tuned to their specific frequencies by a radio frequency tuner unlike other electromagnetic frequencies (like light) that are resonating at their natural frequency. The natural frequency of the radio wave is never given and we are not told why.

Natural frequency
Wiki:Natural frequency, also known as eigenfrequency, is the frequency at which a system tends to oscillate in the absence of any driving or damping force.”  (This is entirely absent from the spectrum in the case of radio frequency.)

A frequency that is not a natural frequency has to be produced artificially. Therefore all of the radio frequencies in the spectrum are artificial, the product of intentional human design and manufacture.
There are exceptions, radio telescopes detect stellar radio frequencies in the GHz microwave band called radio frequencies but these have different properties associated with heat. Why are such frequencies called radio frequencies? A signal transmitted by light is not called RF, a signal transmitted by heat is called RF. Heat or thermal radiation does not appear in the spectrum above being represented in reality by infrared (light), microwaves (RF) and ultraviolet (light). Confusing!

Wiki: Thermal radiation is electromagnetic radiation generated by the thermal motion of particles in matter. All matter with a temperature greater than absolute zero emits thermal radiation. Particle motion results in charge-acceleration or dipole oscillation which produces electromagnetic radiation.
The infrared radiation emitted by animals that is detectable with an infrared camera, and the cosmic microwave background radiation, are all examples of thermal radiation.

Tuning
According to Wiki: “A tuner is a subsystem that receives radio frequency (RF) transmissions like radio broadcasts and converts the selected carrier frequency and its associated bandwidth into a fixed frequency that is suitable for further processing, usually because a lower frequency is used on the output… …some of the earlier types were purely mechanical and adjusted the capacitance or inductance of the tuned circuit to a preset number of positions corresponding to the frequencies of popular local stations” https://en.wikipedia.org/wiki/Tuner_(radio)
No mention of how a tuner works because the Wiki editor probably doesn’t know how it works.

Frequency of an Electron
Suppose we want to find the natural frequency of an electron, (it is oscillating, it has vibrations) where do we look on the spectrum? No one seems to know. Try Googling “frequency of an electron”? If, as we are told electricity occurs in waves and waves can only be waves if they have a frequency, then what is the frequency of an electron or even a DC current wave in a conductor? We are looking for the natural frequencies – Missing!

What is the frequency of an electron wave?
Ulrich Zürcher
Physics Department, Cleveland State University, Cleveland, OH 44115, USA
E-mail: u.zurcher@csuohio.edu
Received 21 December 2015, revised 30 March 2016
Accepted for publication 12 April 2016
Published 28 April 2016

Abstract

“Particle–wave duality is a central tenet of quantum physics, and an electron has wave-like properties. Introductory texts discuss the wavelength–momentum relationship l = h p , but do not discuss the frequency–energy relationship. This is curious since a wave is periodic both in space and time. (oscillating- undulating)

The discussion in more advanced texts is not satisfactory either since two different expressions for the frequency are given based on the relativistic and non-relativistic expression for the electron energy. The relativistic expression yields the correct frequency, and we explain why the expression based on the Schrödinger equation gives the incorrect expression. We argue that the electron frequency should be discussed at the introductory level.”

The writer is obviously not happy and that is as close to an answer as you are likely to get/or not get.

What is the frequency of DC?
https://www.quora.com/What-is-the-frequency-of-DC?share=1
Not one of the respondents understood the question here. All electricity is a wave and DC electricity is no different. What is the frequency of the wave?

What is the frequency of a DC current in a conductor?
When we consider that electricity has to be a wave – we are told that an electron is a wave and so we expect a wave to have a frequency. Science dodges this one by insisting that electrons have a range of frequencies. OK, what is the average frequency of an electron? You will not get a straight answer because no one has an answer. An electromagnetic wave has a magnetic field component and an electric field component and it propagates in the form of a wave (frequency). As we see in the graphic above the wave has compression and rarefaction. This applies to both AC and DC and so DC must have a frequency.

I don’t think that anyone who even attempted to answer really understood the question. Check for yourself: many answers insist on modulating the DC and then measuring the frequency – which is absurd. This is to highlight the complete confusion encountered when awkward electrical questions are asked, a confusion that is deliberate and intended to confuse the student.

We have an electromagnetic spectrum that does not include natural electricity or natural radio frequency.  If anyone has the answer to this let me know.

See: Electron Gone?

See: The Hertzian Conspiracy

## 3 thoughts on “Electron Frequency”

1. An electromagnetic wave has a magnetic field component and an electric field component and it propagates in the form of a wave (frequency). This applies to AC and DC and so DC must have a frequency.

Like

This site uses Akismet to reduce spam. Learn how your comment data is processed.